Vera Sacristán Discrete and Algorithmic Geometry Geometry Facultat de Matemàtiques i Estadística Universitat Politècnica de Catalunya **Computing the extreme points** ### **Computing the extreme points** #### Characterization ### **Computing the extreme points** #### Characterization ## Computing the extreme points #### Characterization ### Computing the extreme points #### Characterization ### **Computing the extreme points** #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### **Computing the extreme points** #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### **Computing the extreme points** #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ### Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . ## Computing the extreme points #### Characterization Given $X = \{p_1, \dots, p_n\}$, the point p_i belongs to the boundary of the convex hull of X if and only if p_i does not lie in any of the triangles $p_j p_k p_l$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme points #### Procedure: For each i, For each $j, k, l \neq i$, If p_i lies in the triangle p_j, p_k, p_l , eliminate p_i . Return the set of surviving p_i 's. ## Running time: $\Theta(n^4)$ **Computing the extreme segments** #### Computing the extreme segments #### Characterization ### ### Characterization ### Computing the extreme segments #### Characterization ### Computing the extreme segments #### Characterization Given $X = \{p_1, \dots, p_n\}$, the segment $p_i p_j$ is an extreme segment if and only if all the points p_k with $k \neq i, j$ lie in the same halfplane defined by the line $p_i p_j$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme segments #### Procedure: For each i, j, Check whether all p_k with $k \neq i, j$ lie in the same halfplane defined by $p_i p_j$. ### Computing the extreme segments #### Characterization Given $X = \{p_1, \dots, p_n\}$, the segment $p_i p_j$ is an extreme segment if and only if all the points p_k with $k \neq i, j$ lie in the same halfplane defined by the line $p_i p_j$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme segments #### Procedure: For each i, j, Check whether all p_k with $k \neq i, j$ lie in the same halfplane defined by $p_i p_j$. ### Computing the extreme segments #### Characterization Given $X = \{p_1, \dots, p_n\}$, the segment $p_i p_j$ is an extreme segment if and only if all the points p_k with $k \neq i, j$ lie in the same halfplane defined by the line $p_i p_j$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme segments #### Procedure: For each i, j, Check whether all p_k with $k \neq i, j$ lie in the same halfplane defined by $p_i p_j$. ### Computing the extreme segments #### Characterization Given $X = \{p_1, \dots, p_n\}$, the segment $p_i p_j$ is an extreme segment if and only if all the points p_k with $k \neq i, j$ lie in the same halfplane defined by the line $p_i p_j$. ### **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme segments #### Procedure: For each i, j, Check whether all p_k with $k \neq i, j$ lie in the same halfplane defined by $p_i p_j$. ### Computing the extreme segments #### Characterization Given $X = \{p_1, \dots, p_n\}$, the segment $p_i p_j$ is an extreme segment if and only if all the points p_k with $k \neq i, j$ lie in the same halfplane defined by the line $p_i p_j$. ## **Algorithm** Input: p_1, \ldots, p_n Output: set of the extreme segments #### Procedure: For each i, j, Check whether all p_k with $k \neq i, j$ lie in the same halfplane defined by $p_i p_j$. In the affirmative, return the segment $p_i p_j$. Running time: $\Theta(n^3)$ Computing the convex hull Computing the convex hull (sorted list of its vertices) ## Computing the convex hull ### Input: $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$ a set of n points in the plane ### **Output:** l, the list of the vertices of ch(P) sorted in counterclockwise order ### Computing the convex hull ### Input: $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$ a set of n points in the plane ## **Output:** l, the list of the vertices of ch(P) sorted in counterclockwise order #### Characterization Given $X = \{p_1, \dots, p_n\}$, the segment $p_i p_j$ is an edge of the convex hull of X if and only if all the points p_k with $k \neq i, j$ lie to the left of the oriented line $p_i p_j$. - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_i to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_i to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_i to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_i to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return l - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_i to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_j to l - 3. Return *l* ### Jarvis march - 1. Find a vertex of ch(P) (for example, the lexicographically smaller point $p_i \in P$) and add it to l - 2. While $v = \text{Last}(l) \neq \text{First}(l)$, do: - (a) Detect the angularly rightmost point $p_j \in P$ with respect to v. - (b) Add p_i to l - 3. Return *l* Time cost: $\Theta(hn) = O(n^2)$ QuickHull algorithm (by prune-and-search) ### QuickHull algorithm (by prune-and-search) #### Initialization - 1. Find the extreme points in the horizontal and vertical directions. - 2. Compute the convex hull of these (between 2 and 8) points. - 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior. ## QuickHull algorithm (by prune-and-search) #### Initialization - 1. Find the extreme points in the horizontal and vertical directions. - 2. Compute the convex hull of these (between 2 and 8) points. - 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior. ## QuickHull algorithm (by prune-and-search) #### Initialization - 1. Find the extreme points in the horizontal and vertical directions. - 2. Compute the convex hull of these (between 2 and 8) points. - 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior. ## QuickHull algorithm (by prune-and-search) ### Initialization - 1. Find the extreme points in the horizontal and vertical directions. - 2. Compute the convex hull of these (between 2 and 8) points. - 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior. ## QuickHull algorithm (by prune-and-search) ### Initialization - 1. Find the extreme points in the horizontal and vertical directions. - 2. Compute the convex hull of these (between 2 and 8) points. - 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior. ## QuickHull algorithm (by prune-and-search) ### Initialization - 1. Find the extreme points in the horizontal and vertical directions. - 2. Compute the convex hull of these (between 2 and 8) points. - 3. Test all the remaining points, and classify them according to their position (NE, SE, SW, NW) or eliminate them if they lie in the interior. Running time of this step: O(n) ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) Advance Recursively, do: 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. ## QuickHull algorithm (by prune-and-search) Advance Recursively, do: 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. ## QuickHull algorithm (by prune-and-search) Advance Recursively, do: 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. ## QuickHull algorithm (by prune-and-search) Advance Recursively, do: 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) #### Advance - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. ## QuickHull algorithm (by prune-and-search) Advance Recursively, do: - 1. Among all points lying in each region, find the extreme point in the direction orthogonal to the edge that determines the region. - 2. Connect the extreme point with te endpoints of the edge, and update the convex hull. - 3. Test all the remaining points of each region, and classify them according to their position (left or right) or eliminate them if they lie in the interior of the newly created triangle. Running time of this step: $O(n^2)$ QuickHull algorithm (by prune-and-search) Overall running time: $O(n^2)$ ## QuickHull algorithm (by prune-and-search) Overall running time: $O(n^2)$ Nevertheless, the running time of this algorithm depends on the position of the input points. For example: - If the input points are in convex position, the running time is $\Theta(n^2)$. - If the points are such that each prune step eliminates half of the current points, then the algorithm runs in $\Theta(n \log n)$ time. - If the convex hull is triangular, the algorithm runs in $\Theta(n)$ time. **Graham's algorithm** ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P #### Advance ``` While there exist points p_i \in P to be explored, do: ``` ``` p = top(l) p^{-} = previous(top(l)) ``` - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ### Advance While there exist points $p_i \in P$ to be explored, do: ``` p = top(l)p^- = previous(top(l)) ``` - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: ``` p = top(l)p^- = previous(top(l)) ``` - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l Return *l* 10 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of $\operatorname{ch}(P)$, push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^{-} = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of $\operatorname{ch}(P)$, push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^{-} = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^{-} = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^{-} = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of $\operatorname{ch}(P)$, push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of $\operatorname{ch}(P)$, push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of $\operatorname{ch}(P)$, push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of $\operatorname{ch}(P)$, push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** #### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ### Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ## Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance $\it i$ - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^{-} = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l 17 ## **Graham's algorithm** ## Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l 17 ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l ## **Graham's algorithm** ## Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in $\it l$ and delete if from $\it P$ ## Advance While there exist points $p_i \in P$ to be explored, do: ``` p = top(l) p^{-} = previous(top(l)) ``` - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ## Advance While there exist points $p_i \in P$ to be explored, do: ``` p = top(l)p^{-} = previous(top(l)) ``` - If p^-pp_i is a left turn: - Push p_i in l - Advance i - Else: - Pop p from l ## **Graham's algorithm** ### Initialization - Find a vertex v of ch(P), push it in l and delete it from P - Angularly sort the points around \boldsymbol{v} - Push the first point in l and delete if from P ## Advance While there exist points $p_i \in P$ to be explored, do: $$p = top(l)$$ $$p^- = previous(top(l))$$ - If p^-pp_i is a left turn: - Push p_i in l - Advance *i* - Else: - Pop p from l Return *l* **Running time:** $O(n \log n)$ Incremental algorithm ## Incremental algorithm ``` Initialization ``` ``` l=p_1,p_2,p_3 ``` ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ## Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ## Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r # Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r # Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r # Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r # Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r # Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r # Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r Return l Running time: $O(n \log n)$ ## Incremental algorithm ### Initialization $$l = p_1, p_2, p_3$$ ### Advance From i = 4 to n, do: If p_i lies in the exterior of the polygon defined by l: - Compute the points p_l and p_r defining the supporting lines from p_i to the polygon - Replace the chain p_l, \ldots, p_r in l with the chain p_l, p_i, p_r Return 1 # Running time: $O(n \log n)$ By storing l in a structure allowing binary search and updatings (insertions and deletions) in $O(\log n)$ time. Divide-and-conquer algorithm # Divide-and-conquer algorithm Initialization 1. Sort the points by abscissae # Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ## Division # Divide-and-conquer algorithm ## Initialization 1. Sort the points by abscissae ## Division # Divide-and-conquer algorithm ## Initialization 1. Sort the points by abscissae ## Division # Divide-and-conquer algorithm ## Initialization 1. Sort the points by abscissae ## Division # Divide-and-conquer algorithm ## Initialization 1. Sort the points by abscissae ## Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets # Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ## Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets # Divide-and-conquer algorithm ## Initialization 1. Sort the points by abscissae ## Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets # Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ### Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ## Recursion 1. Recursively compute the convex hull of the two subsets - 1. Compute the external common tangents of the two convex polygons - 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments # Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ### Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets - 1. Compute the external common tangents of the two convex polygons - 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments # Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ### Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets - 1. Compute the external common tangents of the two convex polygons - 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments ## Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ### Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets - 1. Compute the external common tangents of the two convex polygons - 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments # Divide-and-conquer algorithm ### Initialization 1. Sort the points by abscissae ### Division 1. Divide the points (x_i, y_i) into two subsets, wrt the median value of the abscissae ### Recursion 1. Recursively compute the convex hull of the two subsets - 1. Compute the external common tangents of the two convex polygons - 2. Delete the interior chains of the two polygons and join the external chains through the supporting segments # Divide-and-conquer algorithm # Running time Initialization: $O(n \log n)$ (only once) # Divide-and-conquer algorithm # Running time Initialization: $O(n \log n)$ (only once) Division: O(n) # Divide-and-conquer algorithm # Running time Initialization: $O(n \log n)$ (only once) Division: O(n) Merge: O(n) ### Divide-and-conquer algorithm ### Running time Initialization: $O(n \log n)$ (only once) Division: O(n) Merge: O(n) Advance: $$T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n\log n)$$ Overall: $O(n \log n)$ Lower bound #### Lower bound Input: n real numbers x_1, \ldots, x_n real numbers #### Lower bound Input: n real numbers x_1, \ldots, x_n real numbers #### Lower bound ### Input: n real numbers x_1, \ldots, x_n real numbers ### Input: n points $$p_1, \ldots, p_n$$, with $p_i = (x_i, x_i^2)$ #### Lower bound #### Input: n real numbers x_1, \ldots, x_n real numbers ### Input: n points p_1, \ldots, p_n , with $p_i = (x_i, x_i^2)$ #### Lower bound ### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points p_1,\ldots,p_n , with $p_i=(x_i,x_i^2)$ #### Output: convex hull of the points Sorted list of the vertices of the convex hull #### Lower bound ### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points p_1,\ldots,p_n , with $p_i=(x_i,x_i^2)$ #### Output: convex hull of the points Sorted list of the vertices of the convex hull #### Lower bound #### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points p_1,\ldots,p_n , with $p_i=(x_i,x_i^2)$ ### Output: convex hull of the points Sorted list of the vertices of the convex hull #### **Output:** sorting the numbers #### Lower bound #### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points p_1,\ldots,p_n , with $p_i=(x_i,x_i^2)$ #### Output: convex hull of the points Sorted list of the vertices of the convex hull #### **Output:** sorting the numbers #### Lower bound ### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points p_1, \ldots, p_n , with $p_i = (x_i, x_i^2)$ #### Output: convex hull of the points Sorted list of the vertices of the convex hull #### **Output:** sorting the numbers #### Lower bound #### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points $$p_1,\ldots,p_n$$, with $p_i=(x_i,x_i^2)$ #### Output: convex hull of the points Sorted list of the vertices of the convex hull #### **Output:** sorting the numbers #### Lower bound #### Input: n real numbers x_1, \ldots, x_n real numbers #### Input: n points $$p_1,\ldots,p_n$$, with $p_i=(x_i,x_i^2)$ #### **Output:** convex hull of the points Sorted list of the vertices of the convex hull #### **Output:** sorting the numbers #### Extension: convex hull of a simple polygon - Is it possible to design an $o(n \log n)$ time algorithm by exploiting the order of the vertices of the polygon? - Is it possible, for example, to apply Graham's algorithm using the order of the vertices of the polygon? #### Extension: convex hull of a simple polygon - Is it possible to design an $o(n \log n)$ time algorithm by exploiting the order of the vertices of the polygon? - Is it possible, for example, to apply Graham's algorithm using the order of the vertices of the polygon? #### Extension: do the previous strategies extend to the 3D case? - Is it possible to design an 3-dimensional gitf wrap convex hull algorithm? - Is it possible to design a 3-dimensional incremental convex hull algorithm? - Is it possible to design a 3-dimensional divide-and-conquer convex hull algorithm? #### **FURTHER READING** - J. O'Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press, 1998. - F. Preparata, M. Shamos, **Computational Geometry: An introduction (revised ed.)**, Springer, 1993. #### ...AND PLAYING ``` In 2D: http://www.dma.fi.upm.es/docencia/segundociclo/geomcomp/convex.html In 3D: http://www.cse.unsw.edu.au/~lambert/java/3d ```