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CONVEX HULL IN 2D



Computing the extreme points

Characterization
Given X = {p1, . . . , pn}, the point pi belongs to the boundary of the convex hull of X if and
only if pi does not lie in any of the triangles pjpkpl.
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Computing the extreme points

Characterization
Given X = {p1, . . . , pn}, the point pi belongs to the boundary of the convex hull of X if and
only if pi does not lie in any of the triangles pjpkpl.

Algorithm

Input: p1, . . . , pn
Output: set of the extreme points

Procedure:
For each i,
For each j, k, l 6= i,
If pi lies in the triangle pj , pk, pl, eliminate pi.

Return the set of surviving pi’s.
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CONVEX HULL IN 2D



Computing the extreme points

Characterization
Given X = {p1, . . . , pn}, the point pi belongs to the boundary of the convex hull of X if and
only if pi does not lie in any of the triangles pjpkpl.

Algorithm

Input: p1, . . . , pn
Output: set of the extreme points

Procedure:
For each i,
For each j, k, l 6= i,
If pi lies in the triangle pj , pk, pl, eliminate pi.

Return the set of surviving pi’s.

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC
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Computing the extreme points

Characterization
Given X = {p1, . . . , pn}, the point pi belongs to the boundary of the convex hull of X if and
only if pi does not lie in any of the triangles pjpkpl.

Algorithm

Input: p1, . . . , pn
Output: set of the extreme points

Procedure:
For each i,
For each j, k, l 6= i,
If pi lies in the triangle pj , pk, pl, eliminate pi.

Return the set of surviving pi’s.

Running time: Θ(n4)
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Computing the extreme segments

Characterization
Given X = {p1, . . . , pn}, the segment pipj is an extreme segment if and only if all the points
pk with k 6= i, j lie in the same halfplane defined by the line pipj .
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Computing the extreme segments

Characterization
Given X = {p1, . . . , pn}, the segment pipj is an extreme segment if and only if all the points
pk with k 6= i, j lie in the same halfplane defined by the line pipj .

Algorithm

Input: p1, . . . , pn
Output: set of the extreme segments

Procedure:
For each i, j,
Check whether all pk with k 6= i, j

lie in the same halfplane defined by pipj .
In the affirmative, return the segment pipj .
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Computing the extreme segments

Characterization
Given X = {p1, . . . , pn}, the segment pipj is an extreme segment if and only if all the points
pk with k 6= i, j lie in the same halfplane defined by the line pipj .

Algorithm

Input: p1, . . . , pn
Output: set of the extreme segments

Procedure:
For each i, j,
Check whether all pk with k 6= i, j

lie in the same halfplane defined by pipj .
In the affirmative, return the segment pipj .

Running time: Θ(n3)
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Computing the convex hull
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Computing the convex hull (sorted list of its vertices)
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Computing the convex hull

Input:
P = {p1, . . . , pn} ⊂ R

2 a set of n points in the plane

Output:
l, the list of the vertices of ch(P ) sorted in counterclockwise order
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Computing the convex hull

Characterization
Given X = {p1, . . . , pn}, the segment pipj is an edge of the convex hull of X if and only if all
the points pk with k 6= i, j lie to the left of the oriented line pipj .

Input:
P = {p1, . . . , pn} ⊂ R

2 a set of n points in the plane

Output:
l, the list of the vertices of ch(P ) sorted in counterclockwise order
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Jarvis march
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Jarvis march

1. Find a vertex of ch(P ) (for example, the lexico-
graphically smaller point pi ∈ P ) and add it to l

2. While v = Last(l) 6= First(l), do:

(a) Detect the angularly rightmost point pj ∈ P

with respect to v.

(b) Add pj to l

3. Return l
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Jarvis march

1. Find a vertex of ch(P ) (for example, the lexico-
graphically smaller point pi ∈ P ) and add it to l

2. While v = Last(l) 6= First(l), do:

(a) Detect the angularly rightmost point pj ∈ P

with respect to v.

(b) Add pj to l

3. Return l

CONVEX HULL IN 2D

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC
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Jarvis march

1. Find a vertex of ch(P ) (for example, the lexico-
graphically smaller point pi ∈ P ) and add it to l

2. While v = Last(l) 6= First(l), do:

(a) Detect the angularly rightmost point pj ∈ P

with respect to v.

(b) Add pj to l

3. Return l

Time cost: Θ(hn) = O(n2)
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QuickHull algorithm (by prune-and-search)
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QuickHull algorithm (by prune-and-search)

Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.
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Initialization

1. Find the extreme points in the horizontal and
vertical directions.

2. Compute the convex hull of these (between 2
and 8) points.

3. Test all the remaining points, and classify them
according to their position (NE, SE, SW, NW)
or eliminate them if they lie in the interior.

Running time of this step: O(n)
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QuickHull algorithm (by prune-and-search)

Advance

Recursively, do:

1. Among all points lying in each region, find the
extreme point in the direction orthogonal to the
edge that determines the region.

2. Connect the extreme point with te endpoints of
the edge, and update the convex hull.

3. Test all the remaining points of each region, and
classify them according to their position (left or
right) or eliminate them if they lie in the interior
of the newly created triangle.
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QuickHull algorithm (by prune-and-search)

Overall running time: O(n2)
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QuickHull algorithm (by prune-and-search)

Overall running time: O(n2)

Nevertheless, the running time of this algorithm de-
pends on the position of the input points.
For example:

• If the input points are in convex position, the
running time is Θ(n2).

• If the points are such that each prune step elim-
inates half of the current points, then the algo-
rithm runs in Θ(n log n) time.

• If the convex hull is triangular, the algorithm runs
in Θ(n) time.
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Graham’s algorithm
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Graham’s algorithm

Initialization
- Find a vertex v of ch(P ), push it in l and delete it from P

- Angularly sort the points around v

- Push the first point in l and delete if from P

Advance
While there exist points pi ∈ P to be explored, do:
p = top(l)
p− = previous(top(l))
- If p−ppi is a left turn:

- Push pi in l

- Advance i

- Else:
- Pop p from l

Return l
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Incremental algorithm

Initialization
l = p1, p2, p3

Advance
From i = 4 to n, do:
If pi lies in the exterior of the polygon defined by l:

- Compute the points pl and pr
defining the supporting lines
from pi to the polygon

- Replace the chain pl, . . . , pr in l

with the chain pl, pi, pr

Return l
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with the chain pl, pi, pr

Return l
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Incremental algorithm

Initialization
l = p1, p2, p3

Advance
From i = 4 to n, do:
If pi lies in the exterior of the polygon defined by l:

- Compute the points pl and pr
defining the supporting lines
from pi to the polygon

- Replace the chain pl, . . . , pr in l

with the chain pl, pi, pr

Return l

Running time: O(n log n)
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Incremental algorithm

Initialization
l = p1, p2, p3

Advance
From i = 4 to n, do:
If pi lies in the exterior of the polygon defined by l:

- Compute the points pl and pr
defining the supporting lines
from pi to the polygon

- Replace the chain pl, . . . , pr in l

with the chain pl, pi, pr

Return l

By storing l in a structure allowing binary
search and updatings (insertions and deletions)
in O(log n) time.

Running time: O(n log n)
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Divide-and-conquer algorithm
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Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae
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Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

Division

1. Divide the points (xi, yi) into two subsets,
wrt the median value of the abscissae
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Divide-and-conquer algorithm

Initialization

1. Sort the points by abscissae

Division

1. Divide the points (xi, yi) into two subsets,
wrt the median value of the abscissae

Recursion

1. Recursively compute the convex hull of the
two subsets
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1. Compute the external common tangents of
the two convex polygons

2. Delete the interior chains of the two poly-
gons and join the external chains through
the supporting segments
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Divide-and-conquer algorithm

Running time

Initialization: O(n log n) (only once)
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Divide-and-conquer algorithm

Running time

Initialization: O(n log n) (only once)

Division: O(n)
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Divide-and-conquer algorithm

Running time

Initialization: O(n log n) (only once)

Division: O(n)

Merge: O(n)

CONVEX HULL IN 2D

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC



Divide-and-conquer algorithm

Running time

Initialization: O(n log n) (only once)

Division: O(n)

Merge: O(n)

Advance:

T (n) = 2T
(n

2

)

+O(n) = O(n log n)

Overall: O(n log n)
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Lower bound

CONVEX HULL IN 2D

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC



Lower bound

Input: n real numbers
x1, . . . , xn real numbers
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Lower bound

Input: n real numbers
x1, . . . , xn real numbers

Input: n points
p1, . . . , pn, with pi = (xi, x

2

i )

Output: convex hull of the points
Sorted list of the vertices of the convex hull
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Extension: convex hull of a simple polygon

• Is it possible to design an o(n log n) time algorithm by exploiting the order of the vertices
of the polygon?

• Is it possible, for example, to apply Graham’s algorithm using the order of the vertices of
the polygon?
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Extension: do the previous strategies extend to the 3D case?

• Is it possible to design an 3-dimensional gitf wrap convex hull algorithm?

• Is it possible to design a 3-dimensional incremental convex hull algorithm?

• Is it possible to design a 3-dimensional divide-and-conquer convex hull algorithm?
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...AND PLAYING

In 2D:

http://www.dma.fi.upm.es/docencia/segundociclo/geomcomp/convex.html

In 3D:

http://www.cse.unsw.edu.au/∼lambert/java/3d

FURTHER READING

• J. O’Rourke, Computational Geometry in C (2nd ed.), Cambridge University Press,
1998.

• F. Preparata, M. Shamos, Computational Geometry: An introduction (revised ed.),
Springer, 1993.


